An Introduction To Cardiovascular Physiology 5e

Now in its second edition, this highly accessible monograph lays a foundation for understanding of the underlying concepts of normal cardiovascular function. Students of medicine and related disciplines welcome the book’s concise coverage as a practical partner or alternative to a more mechanistically oriented approach or an encyclopedic physiology text. A focus on well-established cardiovascular principles reflects recent, widely accepted research from the field.


Thoroughly revised and updated, this Fourth Edition is the only current book that integrates cellular and subcellular components of cardiovascular physiology in the analysis of physiologic and pathophysiologic responses. In straightforward terms, with more than 600 diagrams and illustrations, the book explains the key principles crucial to understanding how the cardiovascular system and its components function and malfunction. For this edition, Dr. Opie has enlisted eight internationally eminent co-authors and added a new chapter on cell signaling. The chapters on physiology of the ECG and arrhythmias contain many more ECGs. More than half of the illustrations—including 12 color plates—are new.

Although cardiac output is measured as the flow of blood from the left ventricle into the aorta, the system that controls cardiac output includes many other components besides the heart itself. The heart's rate of output cannot exceed the rate of venous return to it, and therefore, the factors governing venous return are primarily responsible for control of output from the heart. Venous return is affected by its pressure gradient and resistance to flow throughout the vascular system. The pressure gradient for venous return is a function of several factors including the blood volume flowing through the system, the unstressed vascular volume of the circulatory system, its capacitance, mean systemic pressure, and right atrial pressure. Resistance to venous return is the sum of total vascular resistance from the aortic valve to the right atrium. The sympathetic nervous system and vasoactive circulating hormones affect short-term resistance, whereas local tissue blood flow autoregulatory mechanisms are the dominant determinants of long-term resistance to venous return. The strength of contraction of the heart responds to changes in atrial pressure driven by changes in venous return, with small changes in atrial pressure eliciting large changes in strength of contraction, as described by the Frank-Starling mechanism. In addition, the autonomic nervous system input to the heart alters myocardial pumping ability in response to cardiovascular challenges. The function of the cardiovascular system is strongly affected by the operation of the renal sodium excretion-body fluid volume-arterial pressure negative feedback system that maintains arterial blood pressure at a controlled value over long periods. The intent of this volume is to integrate the basic knowledge of these cardiovascular system components into an understanding of cardiac output regulation. Table of Contents: Introduction / Venous Return / Cardiac Function / Integrated Analysis of Cardiac Output Control / Analysis of Cardiac Output Regulation by Computer Simulation / Analysis of Cardiac Output Control in Response to Challenges / Conclusion / References / Author Biography could go on for several pages. Thus the book edited This book emphasizes the fundamental, functional aspects of cardiology.

Within the last thirty years, by Sperelakis IS a potent reminder of the almost for the rift between clinical and investigative cardiology
gotten fact that cardiology has two sites, inextrica has widened, because of the overwhelming deval bly related. opment of new
clinical procedures, both diagnostic The book deals with subjects in which Dr. Sper and therapeutic. Almost forgotten is the fact
that elakis has pioneered: ultrastructure of heart muscle, we owe most of the clinical advances to theoretical electrophysiology,
cardiac contractility, and ion ex and experimental observations. I need not remind change. An extension of these subjects is the
chapter the reader of the work of Carrel, who performed the dealing with fundamental topics of the coronary gir first experimental
coronary bypass in 1902, or the culation. work of the brothers Curie in 1880, both physicists. This book is indeed a timely reminder
of the im who discovered piezoelectricity, the keystone in ech portance of the fundamental aspects of cardiology. ogradiography;
of the works of Langley, who intro Emphasis on clinical aspects of cardiology alone will duced the receptors concept; of Ahlquist in
1946, result in a sterile and unproductive future for a field who first differentiated between alpha and beta re that has made such
stunning advances during the ceptrors; of Fleckenstein, a physiologist who pi last thirty years to the benefit of millions of people.
Sex Differences in Cardiovascular Physiology and Pathophysiology is a comprehensive look into the often overlooked and
underappreciated fundamental sex differences between men and women and how those differences affect the cardiovascular
system. It covers cardiovascular function, anatomy, cell signaling and the development of pathology. With contributions from world-
renowned research investigators, this up-to-date reference compiles critical knowledge on cardiovascular sex differences,
providing researchers and clinicians with a better understanding of the diagnosis, prevention and treatment of cardiovascular
diseases in both men and women. Identifies the fundamental sex differences in the physiology and pathophysiology of the
cardiovascular system Describes cell signaling pathways involved in sex-associated cardiovascular function and diseases Puts the
sex differences in cardiovascular diseases in the forefront to improve cardiovascular prognoses
This text provides a clear, clinically oriented exposition of the essentials of cardiovascular physiology for medical students,
residents, nurses, and allied health professionals. Detailed illustrations and online animated figures help students understand key
cardiovascular concepts.

The Student Workbook and Lab Manual is organized to follow the textbook on a chapter-by-chapter basis, providing questions and
activities to help the student review the material presented in the chapter. Key Term review, study questions, art labeling activities,
lab investigations, and practice tests are just some of the exercises offered to support student learning. This supplement is a
consumable resource, designed with perforated pages so that a given chapter can be removed and turned in for grading.
Revised and updated, this volume is a comprehensive, clear, concise, and easy-to-understand introduction to cardiovascular
diseases. This bestselling text is specifically designed to meet the needs of medical students during their initial encounters with patients with heart disease.

This pack contains An Introduction to Cardiovascular Physiology, 5e by Rodney Levick and Cardiovascular Physiology: Questions for Self Assessment by Rodney Levick.

The most authoritative and student-friendly physiology textbook of its kind provides a concise introduction to modern
physiology. A simple straightforward writing style contains concise explanations of only the most relevant principles in
physiology. This illustrated book contains 4-colour illustrations which clearly show all aspects of physiology and help

Page 1/5
students easily grasp difficult concepts and structures. A multi-author approach in this book, allows the most current
information to be presented by those who know it best. The emphasis in this book is on fundamentals in physiology. It is
particularly strong on cell biology which is the basis for all other functions in the body. These cellular and molecular
aspects are emphasized throughout the text. Helpful learning aids such as boldfaced terms, summaries and review
questions maximize learning and mastery of difficult topics. Clinical comments place the information in context, providing
a student with justification for learning details which are not always of obvious significance. This textbook leads the
student through its subject matter and is an effective teaching aid for medical physiology.
A sound knowledge of cardiovascular physiology is fundamental to understanding cardiovascular disease, exercise
performance and may other aspects of human physiology. Cardiovascular physiology is a major component of all
undergraduate courses in physiology, biomedical science and medicine, and this popular introduction to the subject is
intended primarily for these students. A key feature of this sixth edition is how state-of-the-art technology is applied to
understanding cardiovascular function in health and disease. Thus the text is also well suited to graduate study
programmes in medicine and physiological sciences.
The Mosby Physiology Monograph Series offers the fundamentals of body systems physiology in a clear and concise
manner. Each volume in the series is written by experts in the field for an authoritative, yet readable introduction to the
physiology relevant to a particular organ system. This new 9th edition of Cardiovascular Physiology offers: . Clear,
accurate and up-to-the-minute coverage of the physiology of the cardiovascular system focusing on the needs of the
student. . Pathophysiology content throughout that serves as a bridge between normal function and disease. . Integrated
student-friendly tools, including learning objectives, overview boxes, key words and concepts, chapter summaries, and
clinical cases with questions and explained answers. Access to Student Consult® www.studentconsult.com is an
innovative website that allows you to build a personalized, fully integrated, online library, where you'll find the entire
contents of every STUDENT CONSULT title purchased, integration links to bonus content in other STUDENT CONSULT
titles, and much more.
Quantitative Human Physiology: An Introduction presents a course in quantitative physiology developed for
undergraduate students of Biomedical Engineering at Virginia Commonwealth University. The text covers all the
elements of physiology in nine units: (1) physical and chemical foundations; (2) cell physiology; (3) excitable tissue
physiology; (4) neurophysiology; (5) cardiovascular physiology; (6) respiratory physiology; (7) renal physiology; (8)
gastrointestinal physiology; and (9) endocrinology. The text makes extensive use of mathematics at the level of calculus
and elementary differential equations. Examples and problem sets are provided to facilitate quantitative and analytic
understanding, while the clinical applications scattered throughout the text illustrate the rationale behind the topics
discussed. This text is written for students with no knowledge of physiology but with a solid background in calculus with
elementary differential equations. The text is also useful for instructors with less time; each chapter is intended to be a
single lecture and can be read in a single sitting. A quantitative approach that includes physical and chemical principles
An integrated approach from first principles, integrating anatomy, molecular biology, biochemistry and physiology.
Illustration program reinforces the integrated nature of physiological systems Pedagogically rich, including chapter
objectives, chapter summaries, large number of illustrations, and short chapters suitable for single lectures Clinical
applications relevant to the biomedical engineering student (TENS, cochlear implants, blood substitutes, etc.) Problem
sets provide opportunity for practice and assessment throughout the course.
Introduction to Cardiovascular Physiology has become an essential text in its field, appealing to candidates for the FRCA,
MRCP, MRCS / AFRCs, as well as medical and physiology students. This new edition incorporates several changes and
additions; in particular, there have been rapid advances made in the understanding of the active nature and roles of the
endothelium, and this has resulted in the addition of a new chapter on endothelial cell biology. Many other areas have
been updated, eg response of heart cells to ischaemia; role of integrins; myogenic mechanisms and the mechanisms
underlying many other vascular contractile responses. New figures have been added and references updated. Finally, in
reaction to the recent GMC induced changes in medical education, a problem-based element has been incorporated in
the book.
The second edition of this key resource provides a broad and fundamental overview of basic cardiovascular (CV)
hemodynamic principles with a focus on clinical assessment of CV physiology. Extensively updated, the book includes
new coverage on noninvasive hemodynamic assessment and the effects of selected interventions on CV hemodynamics.
It provides an introduction to the basic concepts such as preload, afterload, myocardial contractility, and cardiac output.
Subsequent chapters examine the effects of interventions such as vasodilators, beta blockers, pressor agents, inotropes,
and different forms of invasive circulatory support. The book also focuses on various methods of hemodynamic
evaluation including echocardiography, CT/MRI, noninvasive hemodynamic assessment, and cardiac catheterization.
The book concludes with a discussion of proper diagnosis, evaluation, and management of patients using hemodynamic
data on a variety of specific disease states. An invaluable contribution to the Contemporary Cardiology Series, the
Second Edition of Cardiovascular Hemodynamics: An Introductory Guide is an essential resource for physicians,
residents, fellows, medical students, and researchers in cardiology, emergency medicine, critical care, and internal
medicine.
Volume One, The Musculoskeletal System, opens with the building blocks of your body—the cells. Your body is built from
many kinds of cells and tissues, and you will learn how they work. Even the bones and muscles that give you strength
and speed depend on many types of cells. This book will: Show you the ins and outs of the bones in your skeleton and
how they functionGive detail as to how your marvelous muscles move youProvide a detailed glossary in the back for
quick reference! Throughout the book you will learn things to do to keep your body healthy. But in a fallen, cursed world things are bound to go wrong. We will look at what happens when disease or injury affects bones and muscles. Volume Two, Cardiovascular and Respiratory Systems. From the level of the cell to the organs themselves, we will examine these systems in depth. Here you will learn: The incredible design of the human heart and how it is really "two pumps in one"! How blood moves through an incredible network of arteries and veins What “blood pressure” is and the marvelous systems that help regulate it How the respiratory system allows us to get the "bad air out" and the "good air in" Along the way, we will see what happens when things go wrong. We will also suggest things to do to keep the heart and lungs healthy. Although the world insists that our bodies are merely the result of time and chance, as you examine the human body closely, you will see that it cannot be an accident. It can only be the product of a Master Designer.

This textbook is based on the author's one-semester course for advanced undergraduates and beginning graduate students in the area of biosolid/biofluid mechanics and biomaterials. Coverage includes an introduction to cardiovascular physiology and chapters on the rheology of blood, mechanics of blood vessels, steady and unsteady flow models, measurements in circulation, prosthetic vascular implants, cardiac imaging, myocardial mechanics, and ventricular assist devices and total artificial hearts. Annotation copyrighted by Book News, Inc., Portland, OR

An Introduction to Cardiovascular Physiology is designed primarily for students of medicine and physiology. This introductory text is mostly didactic in teaching style and it attempts to show that knowledge of the circulatory system is derived from experimental observations. This book is organized into 15 chapters. The chapters provide a fuller account of microvascular physiology to reflect the explosion of microvascular research and include a discussion of the fundamental function of the cardiovascular system involving the transfer of nutrients from plasma to the tissue. They also cover major advances in cardiovascular physiology including biochemical events underlying Starling's law of the heart, nonadrenergic, non-cholinergic neurotransmission, the discovery of new vasoactive substances produced by endothelium and the novel concepts on the organization of the central nervous control of the circulation. This book is intended to medicine and physiology students.

Cardiovascular Physiology gives you a solid understanding of how the cardiovascular system functions in both health and disease. Ideal for your systems-based curriculum, this title in the Mosby Physiology Monograph Series explains how the latest concepts apply to real-life clinical situations. Consult this title on your favorite e-reader, conduct rapid searches, and adjust font sizes for optimal readability. Get clear, accurate, and up-to-the-minute coverage of the physiology of the cardiovascular system. Master the material easily with objectives at the start of each chapter; self-study questions, summaries, and key words and concepts. Grasp the latest concepts in vascular, molecular, and cellular biology as they apply to cardiovascular function, thanks to molecular commentaries in each chapter. Apply information to clinical situations with the aid of clinical commentaries and highlighted clinical vignettes throughout.

The present book covers the basic principles of cardiovascular physiology, pathophysiology and advanced pharmacology with particular emphasis on cellular mechanisms of drug action. It provides an update on the progress made in several aspects of cardiovascular diseases so that it might kindle scientists and clinicians alike in furthering basic and translational research. In addition, the book is expected to fill imperative gaps in understanding and optimally treating cardiovascular disease.

Wonders of the Human Body, Volume Two, covers both the cardiovascular and respiratory systems. From the level of the cell to the organs themselves, we will examine these systems in depth. Here you will learn: The incredible design of the human heart and how it is really “two pumps in one”! How blood moves through an incredible network of arteries and veins What “blood pressure” is and the marvelous systems that help regulate it How the respiratory system allows us to get the “bad air out” and the “good air in” Along the way, we will see what happens when things go wrong. We will also suggest things to do to keep the heart and lungs healthy. Although the world insists that our bodies are merely the result of time and chance, as you examine the human body closely, you will see that it cannot be an accident. It can only be the product of a Master Designer.

This book provides the necessary understanding of the physical principles to produce clear and diagnostically secure Doppler ultrasound scans.

This uniquely readable, compact, and concise monograph lays a foundation of knowledge of the underlying concepts of normal cardiovascular function. Students welcome the book’s broad overview as a practical partner or alternative to a more mechanistically oriented approach or an encyclopedic physiology text. Especially clear explanations, ample illustrations, a helpful glossary of terms, tutorials, and chapter-opening learning objectives provide superb guidance for self-directed learning and help fill the gap in many of today's abbreviated physiology blocks. A focus on well-established cardiovascular principles reflects recent, widely accepted cardiovascular research. The supplemental CD-ROM is an interactive, dynamically linked version of the book, which is organized by normal cardiovascular function and cardiac disease. Students may begin a path of questioning with, for example, a disease condition and then pursue background information through a series of links. Students can also link to the author's regularly updated Web site for additional clinical information.

Beginning with an introduction to kidney function, renal replacement therapies, and an overview of clinical problems associated with haemodialysis, this book explores the principles of the short-term baroreflex regulation of the cardiovascular system and the mechanisms of water and solute transport across the human body from a mathematical model perspective. It synthesizes theoretical physiological concepts and practical aspects of mathematical modelling needed for simulation and quantitative analysis of the haemodynamic response to dialysis therapy. Including an up-to-date review of the literature concerning the modelled physiological mechanisms and processes, the book serves both as an overview of transport and regulatory mechanisms related to the cardiovascular system and body fluids and as a useful reference for the study and development of mathematical models of dynamic physiological processes. Mathematical Modelling of Haemodialysis: Cardiovascular Response, Body Fluid Shifts, and Solute Kinetics is intended for researchers and graduate students in biomedical engineering, physiology, or medicine interested in mathematical modelling of cardiovascular dynamics and fluid and solute transport across the human body, both under physiological conditions and during haemodialysis therapy.

The new edition includes a brief account of major sub-types of ion channels in cardiac and vascular smooth muscle, as well as new sections on intracellular mechanisms of vasodilatation, the role of adhesion molecules in white cell migration in inflammation and mechanisms of
action of metabolic vasodilators. A single chapter on cardiac excitation has been split into two updated chapters on the cardiac myocyte and cardiac electrical system. The sections on cardiac and coronary mechanoeceptor reflexes and on decompensated shock have been updated, and completely new accounts of integrated cardiovascular responses to feeding, ageing, systemic hypoxia and high altitude added. This introductory text has been written with the first-year student in mind and assumes no prior knowledge of the subject. As a further aid to the student preparing for examinations, the second edition contains two new features: a summary at the end of every chapter and a detailed set of Learning Objectives, presented as an Appendix. The depth of coverage also makes this edition useful, however, for the more advanced student, research student or Fellowship/Membership candidate seeking a bridge between the general physiology textbook and the more specialised monograph. Although human heart and circulation are emphasized wherever possible, students of general mammalian cardiovascular physiology will also find it a suitable reference.

The new edition has been significantly revised to include an expanded problem section at the end of each chapter with more quantitative examples and some clinical problems where appropriate. The clinical physiology chapter is now broken into several short chapters. Anaesthesiologists regularly administer potent, and potentially toxic, drugs that profoundly interfere with fundamental physiological functions such as breathing, cardiac output, blood pressure, the protective reflexes and the perception of pain. Reviewing all aspects of human physiology. Physiology for Anaesthetists provides a working knowledge of the practice of anaesthesia, including intensive care medicine and pain management, requires a considerable understanding of normal and abnormal physiology. This is reflected in postgraduate examinations in anaesthesia where candidates are questioned in depth about many aspects of physiology. The second edition of this well-received textbook continues to provide candidates with a 'tailor-made' alternative to more general physiology textbooks, delivering information designed and written specifically to the trainee anaesthetist in mind. The authors bring their extensive experience of teaching physiology to the book in order to improve the understanding of the fundamentals of human physiology in relation to the work of the anaesthetist. The content covers the physiology of all the major organ systems, with specific emphasis on the nervous, respiratory and cardiovascular systems. In addition, there are special sections on the physiology of pain, the physiology of ageing and the physiological effects of specific environments, all highly relevant to anaesthetic practice. Diagrams throughout, praised in reviews of the first edition, are used to support the text and to aid understanding of difficult concepts. The second edition also incorporates a number of new features: learning objectives, areas for reflection and a handy summary of physiological equations. It will remain an invaluable reference throughout anaesthetic training and beyond, and a useful revision aid.

The enormous advances in molecular biology and genetics coupled with the progress in instrumentation and surgical techniques have produced a voluminous and often bewildering quantity of data. The need for a second edition of Cardiovascular Physiology in the Genetically Engineered Mouse is underscored not only by these rapid advances, but by the increasing numbers of scientists who have focussed their research on genetically engineered mice. It is the primary objective of this second edition to interpret critically the literature and to provide a framework for the enormous amount of information in this burgeoning field. As in the first edition, the monograph serves as a practical guide for the reader, with the answers to 'More information' questions that include the murine cardiovascular phenotype. However, this guidebook is a more comprehensive text than its predecessor; although the major objectives enumerated in the first edition have not substantially changed, they have been refined in keeping with the increased sophistication of the molecular biologist, geneticist, and physiologist in each other's discipline. Each chapter has been expanded and updated, richly enhanced with original tables and figures, and in many cases, extensively rewritten. Eight chapters written by internationally recognized experts have been added; this represents a 43 % increase from the first edition.

An Introduction to Cardiovascular Physiology Butterworth-Heinemann

An Introduction to Cardiovascular Physiology provides the student with the key concepts of cardiovascular physiology, from the fundamentals of how the cardiovascular system works in both health and disease, through to a consideration of more complex physiological mechanisms. This brand new companion work Cardiovascular Physiology: Questions for Self-Assessment allows students to test themselves on all aspects of the topic with over 200 questions and answers, at a pace to suit their learning. Questions follow An Introduction to Cardiovascular Physiology's table of contents, and the author has set at least one question on each chapter's learning objective to help the student to assess their progress against the set objectives. The questions are designed to test basic understanding, fundamental principles and medical relevance, and they avoid excessive detail. Most are in a multiple choice, True/False format, with a sprinkling of other question styles including extended matching questions, where the reader chooses the best answer from a list, and testing little numerical problems. Also included with the answers are 'More information' boxes that include a brief explanation, and links to relevant information and figures from a range of chapters, thus encouraging integration of learning across the subject.

Physiology of ageing and the physiological effects of specific environments, all highly relevant to anaesthetic practice. Diagrams throughout, praised in reviews of the first edition, are used to support the text and to aid understanding of difficult concepts. The second edition also incorporates a number of new features: learning objectives, areas for reflection and a handy summary of physiological equations. It will remain an invaluable reference throughout anaesthetic training and beyond, and a useful revision aid.

Physiology for Anaesthetists provides a working knowledge of the practice of anaesthesia, including intensive care medicine and pain management, requires a considerable understanding of normal and abnormal physiology. This is reflected in postgraduate examinations in anaesthesia where candidates are questioned in depth about many aspects of physiology. The second edition of this well-received textbook continues to provide candidates with a 'tailor-made' alternative to more general physiology textbooks, delivering information designed and written specifically to the trainee anaesthetist in mind. The authors bring their extensive experience of teaching physiology to the book in order to improve the understanding of the fundamentals of human physiology in relation to the work of the anaesthetist. The content covers the physiology of all the major organ systems, with specific emphasis on the nervous, respiratory and cardiovascular systems. In addition, there are special sections on the physiology of pain, the physiology of ageing and the physiological effects of specific environments, all highly relevant to anaesthetic practice. Diagrams throughout, praised in reviews of the first edition, are used to support the text and to aid understanding of difficult concepts. The second edition also incorporates a number of new features: learning objectives, areas for reflection and a handy summary of physiological equations. It will remain an invaluable reference throughout anaesthetic training and beyond, and a useful revision aid.

Cardiovascular development -- Important concepts in congenital heart disease -- Preoperative evaluation -- Intraoperative management -- Interpretation of cardiac catheterization data -- Cardiopulmonary bypass -- Mechanical support devices -- Patent ductus arteriosus -- Aortopulmonary window -- Coarctation of the aorta -- Atrial septal defect -- Ventricular septal defects -- Atrioventricular canal defects -- Double outlet right ventricle -- Truncus arteriosus -- Total anomalous pulmonary venous return -- Left ventricle outflow tract obstruction -- Mitral valve -- Pulmonary atresia/intact ventricular septum (PA/IVS) -- Tetralogy of fallot (TOF) -- Tetralogy of fallot with pulmonary atresia (TOF/PA) -- Tetralogy of fallot with absent pulmonary valve (TOF/APV) -- Transposition of the great arteries (TGA) -- Single ventricle lesions -- Hypoplastic left heart syndrome -- Interrupted aortic arch -- Vascular rings -- Tricuspid atresia -- Heart transplantation -- Heart-lung and lung transplantation -- Anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA) -- Heterotaxy -- Ebstein anomaly Mathematical models and numerical simulations can aid the understanding of physiological and pathological processes. This book offers a mathematically sound and up-to-date foundation to the training of researchers and serves as a useful reference for the development of mathematical models and numerical simulation codes.

Cardiovascular Physiology Concept Short Book Description An Introduction to Cardiovascular Physiology provides the student with the key concepts of cardiovascular physiology. Cardiac Physiology Questions for Self Assessment With Illustrated Answers. Cardiovascular Physiology Concept full Book Description Overview of the cardiovascular system The cardiac cycle Cardiac myocyte excitation and contraction Initiation and nervous control of heart beat Electrocardiography and arrhythmias Control of stroke volume and cardiac output Assessment of cardiac output and peripheral pulse Haemodynamics: flow, pressure and resistance The endothelial cell The microcirculation and solute exchange Circulation of fluid between plasma, interstitium and lymph Vascular smooth muscle: excitation, contraction and relaxation Control of blood vessels: I. Intrinsic control Control of blood vessels II. Extrinsic control by nerves and hormones Specialization in individual circulations Cardiovascular receptors, reflexes and central control Co-ordinated cardiovascular responses Cardiovascular responses in pathological situations. The aim of this collection of over 230 questions is to offer students an element of self-assessment, as they progress through the companion book or revise for examinations. Lecturers may find some of the questions useful as a template when setting questions of their own, but should note that the questions are primarily educational in intent; their discriminatory power has not been tested. The questions are grouped under the same headings as the chapters of the companion textbook, so they become progressively more advanced (see Contents). Occasional statements call for information from later chapters. medically relevant questions are introduced wherever they are appropriate. I have set at least one question on each learning objective given at the start of the chapter in the companion volume, to help you assess your achievement of the learning objectives. Some questions require you to integrate information from other
The questions aim to test basic understanding, fundamental principles and medical relevance. Hopefully they avoid excessive detail - always the examiner's easy option! The questions. Most of the questions are multiple choice questions (MCQs), generally with five true/false statements, but occasionally more or less than five. Although some 'educationalists' now demand single correct answer questions (SAQs, one correct answer out of four or five options), these test less knowledge, so the MCQ style has been retained here. To add variety, there is a sprinkling of other styles of question, such as 'extended matching questions' (i.e. choose the best answer from a list), data interpretation problems, and little numerical problems that test reasoning power and ability to do simple calculations. The answers. Each answer is accompanied by a brief explanation, and very often an illustrative figure, which should help if you got the answer wrong. Most of the figures are from the accompanying textbook, but there are also new, explanatory diagrams after some questions. It is sometimes difficult to avoid ambiguity in MCQ questions; so use your common sense - choose the answer that will be right most of the time, rather than a remote, rare possibility. Nevertheless, if you disagree with the 'official' answer, do let me know.

Copyright: e4f5e499382d25ec4f0d0ab02c15ba1c